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Abstract

Using numerical models which require large meteorological data sets is sometimes dif-
ficult and problems can often be traced back to the Input/Output functionality. Complex
models are usually developed by the environmental sciences community with a focus
on the core modelling issues. As a consequence, the I/O routines that are costly to5

properly implement are often error-prone, lacking flexibility and robustness. With the
increasing use of such models in operational applications, this situation ceases to be
simply uncomfortable and becomes a major issue.

The MeteoIO library has been designed for the specific needs of numerical models
that require meteorological data. The whole task of data preprocessing has been del-10

egated to this library, namely retrieving, filtering and resampling the data if necessary
as well as providing spatial interpolations and parametrizations. The focus has been to
design an Application Programming Interface (API) that (i) provides a uniform interface
to meteorological data in the models; (ii) hides the complexity of the processing tak-
ing place; and (iii) guarantees a robust behaviour in case of format errors, erroneous15

or missing data. Moreover, in an operational context, this error handling should avoid
unnecessary interruptions in the simulation process.

A strong emphasis has been put on simplicity and modularity in order to make it
extremely easy to support new data formats or protocols and to allow contributors with
diverse backgrounds to participate. This library can also be used in the context of High20

Performance Computing in a parallel environment. Finally, it is released under an Open
Source license and is available at http://models.slf.ch/p/meteoio.

This paper gives an overview of the MeteoIO library from the point of view of concep-
tual design, architecture, features and computational performance. A scientific evalu-
ation of the produced results is not given here since the scientific algorithms that are25

used have already been published elsewhere.
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1 Introduction

1.1 Background

Users of numerical models for environmental sciences must handle the meteorolog-
ical forcing data with care, since they have a very direct impact on the simulation’s
results. The forcing data come from a wide variety of sources, such as files following5

a specific format, databases hosting data from meteorological networks or web ser-
vices distributing data sets. A significant time investment is necessary to retrieve the
data, look for potentially invalid data points and filter them out, sometimes correcting
the data for various effects and finally converting them to a format and units that the
numerical model supports. These steps are both time intensive and error prone and10

usually cumbersome for new users (similarly to what has been observed for Machine
Learning, Kotsiantis et al., 2006).

From the point of view of the model developer, handling input data is usually a neces-
sary but unpleasant side of model development that distracts from working on the core
features of the model. As a consequence developers tend to spend minimal effort on15

these aspects. Throughout the history of the model, more pre-processing routines will
usually be added to the code in order to handle data-related problems as they arise.
Moreover, supporting new data formats and/or protocols for specific projects, requires
modifying the code by either adding conditional compilation directives or tweaking the
current routines. This means that the data reading and preprocessing routines will often20

be of low quality, lacking robustness and efficiency as well as flexibility, exacerbating
the troubles met by the users in preparing their data for the model.

1.2 Data quality

A most important aspect of data preprocessing is the filtering of data based on their
perceived quality. The aim of filtering data is to remove the mismatch between the25

view of the real-world system that can be inferred from the data and the view that can
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be obtained by directly observing the real-world system (Wand and Wang, 1996). We
focus on two data quality dimensions: accuracy and consistency.

We define accuracy as “the recorded value is in conformity with the actual value”
(Ballou and Pazer, 1985). Inaccuracies occur because of a sensor failure (the sensor
itself fails to operate properly), because of the conditions of the immediate surroundings5

of the sensor (the sensor conditions do not reflect the local conditions, such as a frozen
anemometer) or because of physical limitations of the sensor (such as precipitation
undercatch).

We define consistency in a physical sense, that a data set should obey the physical
laws of nature. Practically, the time evolution of a physical parameter as well as the10

interactions between different physical parameters must obey the laws of nature.

1.3 Design goals

In order to help the users of numerical models consuming meteorological data and re-
duce their need for support, we developed new meteorological data reading routines
and invested significant efforts in improving the overall usability by working on sev-15

eral dimensions of the ergonomic criteria (Scapin and Bastien, 1997), adapting them
according to the needs of a data preprocessing library:

– Guidance: providing a clear structure to the user

– Grouping/distinction of items: so the user sees which items are related

– Consistency: adapt and follow some rules regarding the naming, syntax and20

handling of input parameters

– Workload: focusing on the tasks that the user wants to accomplish

– Minimal actions: limit as much as possible the number of steps for each tasks

– Explicit control: let the user explicitly define the tasks that have to be per-
formed25
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– Error management: helping the user detect and recover from errors

– Error protection: handle all possible user input errors

– Quality of error messages: provide clear and relevant error messages

We also identified two distinct usage scenarios:
Research usage. The end user runs the model multiple times on the same data, with5

some highly tuned parameters in order to produce a simulation for a paper or project.
The emphasis is put on flexibility and configurability (Scapin and Bastien, 1997).

Operational usage. The model is run fully or partially unattended for producing regu-
lar outputs. Once configured, the simulations’ setup remains the same for an extended
period of time. The emphasis is put on robustness and stability.10

We decided to tackle both scenarios with the same software package and ended up
with the following goals:

– Isolate the data reading routines from the rest of the model;

– Implement robust data handling with relevant error messages for the end user;

– Allow the data model to be easily expanded (data model scalability)15

– Make it possible to easily change the data source (format and/or protocol) without
any change in the model code itself;

– Preprocess the data on the fly;

– Implement a “best effort” approach with reasonable fallback strategies in order to
interrupt the simulation process only in the most severe cases;20

– Let the end user configure the whole data reading and preprocessing in a config-
uration file that can be saved for archiving or later use.
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2 Architecture

Using the design philosophy guidelines laid out in Sect. 1.3 and in order to be able to
reuse this software package in other models, we decided to implement this software
package as a library named MeteoIO. We chose the C++ language in order to benefit
from the object oriented model as well as good performance and relatively easy inter-5

facing with other programming languages. We also decided to invest a significant effort
in documenting the software package both for the end users and for developers who
would like to integrate it into their own models. More architectural principles are laid out
in the sections below while the implementation details are given in Sects. 3 and 4.

2.1 Actors10

The question of proper role assignment (Yu and Mylopoulos, 1994), or finding out who
should decide, is central to the development of MeteoIO: carefully choosing if the end
user, the model relying on MeteoIO or MeteoIO itself is the appropriate actor to take
a specific decision has been a recurring question in the general design. For example
when temporally resampling data, the method should be chosen by the end user while15

the sampling rate is given by the numerical model and the implementation details and
error handling belong to MeteoIO.

2.2 Dependencies

When complex software packages grow, they often require more and more external
dependencies (as third party software libraries or third party tools). When new fea-20

tures are added, it is natural to try to build on achievements of the community and not
“reinvent the wheel”. However this also has some drawbacks:

– these third party components must be present on the end user’s computer;

– these components need to be properly located when compiling or installing the
software package;25
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– these components have their own evolution, release schedule and platform sup-
port.

Therefore, as relying more on external components reduces the core development
effort, it significantly increases the integration effort. One must then carefully balance
these two costs and choose the solution that will yield the least long term effort.5

Estimating that a complex integration issue represents a few days of work and a non
negligible maintenance effort, core MeteoIO features that were feasible to implement
within a few days were redeveloped instead of integrating existing solutions. For the
more peripheral features (like output plug-ins) we decided to rely on the most basic
libraries at hand, disregarding convenient wrappers which would introduce yet another10

dependency, and to give the user the possibility to decide which features to enable at
compile time. Accordingly, MeteoIO requires no dependencies by default when it would
have required more than fifteen if no such mitigation strategy had been taken. A handful
of dependencies can be activated when enabling all the optional features.

2.3 Manager/worker architecture15

Many tasks have been implemented as a manager/worker architecture: a manager of-
fers a high level interface to the task (filtering, temporal interpolation, . . . ) while a worker
implements the low level, MeteoIO-agnostic core processing. The manager class im-
plements the necessary features to efficiently convert MeteoIO-centric concepts and
objects to generic, low level data ideal for processing. All of the heavily specialized pro-20

gramming concepts (object factories, method pointers, etc) and their actual implemen-
tations are therefore hidden from both the high level calls and the low level processing.
This architecture balances the needs of the casual developer using the library (relying
on very simple, high level calls) as well as the casual developer expanding the library
by contributing some core processing modules (data sources, data filters, etc).25
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Although this approach might seem inefficient (by adding extra steps in the data
processing), it has contributed to the performance gains (as shown in Sect. 5.2) by
making it possible to rely on standard, optimized routines.

2.4 Flexibility

Since we don’t not want the user to have to recompile either MeteoIO or his model5

when configuring the data preprocessing, everything has to be done dynamically. All
adjustable parameters are configured in a file following the more or less standard INI
ASCII format. This makes it possible to manually configure the preprocessing, copy
elements between different simulations, keep the whole configuration description with
the simulation results and potentially provide a graphical user interface to help the user10

configure his simulation (Bavay and Egger, 2014).
For clarity, each step of the data reading, preprocessing and writing is described in

its own section in the configuration file. There is no central repository or validation of
the keys to be found in this file, leaving each processing component free to manage its
own configuration keys. On the other hand there is no global overview of which keys15

might have been provided by the user but will not be used by any component.
No assumptions are made about the sampling rate of the data read or the data

required by the caller. It is assumed that the input data can be sampled at any rate, in-
cluding irregular sampling and can be resampled to any timestamp, as requested by the
caller. Moreover any data field can be nodata at any time. This means that a given data20

set might contain for example precipitation sampled once a day, temperatures sampled
twice an hour and snow height irregularly sampled. Practically, this prevents us from
using standard signal processing algorithms for resampling data, because these com-
monly assume a constant sampling rate and require that all timestamps have a value.
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2.5 Modularity

A key to the long term success of a software package is the modularity of its internal
components. The choice of an object oriented language (C++) has helped tremen-
dously to build modular elements that are then combined to complete the task. The
data storage classes are built on top of one another (through inheritance or by integrat-5

ing one class as a member of another one) while the data path management is mostly
built as a manager that links all the necessary components. A strong emphasis has
been put on encapsulation by answering, for each new class, the following question:
How should the caller interact with this object in an ideal world? Then the necessary
implementation has been developed from this point of view, adding “non-ideal” bindings10

only when necessary for practical reasons.

2.6 Promoting interdisciplinary contributions

Modularity, by striving to define each data processing in a very generic way and by mak-
ing each one independent of the others, presents external contributors with a far less
intimidating context to contribute. The manager/worker approach shown in Sect. 2.315

also facilitates keeping the modules that are good candidates for third party contri-
butions simple and generic. Some templates providing a skeleton of what should be
implemented are also provided alongside documentation on how to practically con-
tribute with a short list of points to follow for each kind of contribution (data plug-in,
processing element, temporal or spatial interpolation).20

2.7 Coding standards and methodology

The project started in late 2008 and is currently comprised of more than 52 000
lines, contributed by twelve contributors. 95 % of the code originates from the two
main contributors. The code mostly follows the kernel coding style as well as the
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recommendations given by (Rouson et al., 2011), giving the priority to code clarity.
Literate programming is used with the doxygen tool (van Heesch, 2008).

Coding quality is enforced by requesting all committed code to pass the most strin-
gent compiler warnings (all possible warnings on gcc) including the compliance checks
with recommended best practices for C++ (Meyers, 1992). The code currently com-5

piles on Linux, Windows, OS X and Android.
The development methodology is mostly based on Extreme Programming (Beck and

Andres, 2004) with short development cycles of limited scope, architectural flexibility
and evolutions, frequent code reviews and daily integration testing. The daily integra-
tion testing has been implemented with ctest (Martin and Hoffman, 2007), validating the10

core features of MeteoIO and recording the run time for each test. This shows perfor-
mance regressions alongside feature regressions. Regular static analysis is performed
using Cppcheck (Marjamäki, 2013) and less regularly with Flawfinder (Wheeler, 2013)
to detect potential security flaws. Regular leak checks and profiling is performed rely-
ing on the Valgrind instrumentation framework (Seward et al., 2013; Nethercote and15

Seward, 2007).
The code has also been adapted to interact easily with several parallelization tech-

nologies as well as optimized to benefit from single instruction, multiple data (SIMD) ca-
pabilities when feasible. The necessary serialization methods have been implemented
for the POPC extension to C++ (Kuonen et al., 2010) as well as for the Message20

Passing Interface (MPI). For the latter, some kind of a universal serialization has been
implemented: each storage class implements the redirection operators, serializing and
deserializing to/from a standard iostream object. This object is then passed to MPI as
a pure C structure through a very simple wrapper in the calling application.

3 Data structures25

All data classes rely on the Standard Template Library (STL) (Musser et al., 2001) to
a large extent that is available on all C++ compilers and may provide some low level
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optimizations while being quite high level. The design of the STL is also consistent
and therefore a good model to follow: the data classes in MeteoIO follow the nam-
ing scheme and logic of the STL whereever possible, making them easier to use and
remember by a developer who has some experience with the STL. They have been
designed around the following specific requirements:5

– Offer high level features for handling meteorological data and related data. Using
them should make the calling code simpler.

– Implement a standard and consistent interface. Their interface must be obvious
to the caller.

– Implement them in a robust and efficient way. Using them should make the calling10

code more robust and faster.

The range of high level features has been defined according to the needs of models
relying on MeteoIO as well as in terms of completeness. When appropriate and unam-
biguous the arithmetic operators and comparison operators have been implemented.
Each internal design decision has been based on careful benchmarking.15

Great care has been taken to ensure that the implemented functionality behaves as
expected. Of specific concern is that corner cases (or even plain invalid calls) should
never produce a wrong result but strive to produce the expected result or return an ex-
ception. A silent failure would lead to possibly erroneous results in the user application
and must therefore be avoided at all cost.20

3.1 Configuration

In order to automate the process of reading parameters from the end user configuration
file, a specific class has been created to manage configuration parameters. The Config
class stores the configuration options as a key-value couple of strings in a map. The
key is built by prefixing the actual key with the section it belongs to. When calling25

a getter to read a parameter from the Config object, it converts data types on the fly
3605
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through templates. It also offers several convenience methods, such as the possibility
of requesting all keys matching a (simple) pattern or all values whose keys match
a (simple) pattern.

3.2 Dates

The Date class stores the GMT Julian day (including the time) alongside the timezone5

information (because leap seconds are not supported, the reference is defined as being
GMT instead of UTC). The Julian day is stored in double precision which is enough
for one second resolution while keeping dates arithmetic and comparison operators
efficient. The conversion to and from split values is done according to (Fliegel and van
Flandern, 1968). The conversion to and from various other time representations as well10

as various formatted time strings and rounding is implemented.

3.3 Geographic coordinates

The geographic coordinates are converted and stored as latitude, longitude and altitude
in WGS84 by the Coords class. This allows an easy conversion to and from various
Cartesian geographic coordinates systems with a moderate loss of precision (on the15

order of one meter) that is still compatible with their use for meteorological data. Two
different strategies have been implemented for dealing with the coordinate conversions:

– Relying on a the proj4 third party library (pro, 2013). This enables to support all
coordinate systems but brings an external dependency.

– Implementing the conversion to and from latitude/longitude. This does not bring20

any external dependency but requires some specific (although usually limited)
development.

Therefore the coordinate systems that are most commonly used by MeteoIO’s users
have been reimplemented (currently the Swiss CH1903 coordinates, UTM and UPS
Hager et al., 1989) and seldom used coordinate systems are supported by the third25
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party library. It is also possible to define a local coordinate system that uses a reference
point as origin and computes easting and northing from this point using either the law
of cosine or the Vincenty algorithm (Vincenty, 1977) for distance calculations. These
algorithms are also part of the API and thus available to the developer.

3.4 Meteorological data sets5

The meteorological data are centered around the concept of a weather station: one or
more meteorological parameters (in the MeteoData class) measured at one location
(this location can change in time). The station has coordinates (including an elevation)
and often a name or identifier associated with it as well as a slope and azimuth (all
belonging to the StationData class). For each timestamp, a predefined set of meteo-10

rological parameters has been defined and parameters that are not available receive
a nodata value. This set can be extended by defining additional parameters that will
then be handled the same way as the fixed parameters. Some basic merging strate-
gies have been implemented in order to merge measurements from close stations (for
example when a set of instruments belongs to a given measuring network and another15

set, installed on the same mast belongs to another network).
A static map does the mapping between predefined meteorological parameters (de-

fined as an enum) and an index. A vector of strings stores a similar mapping between
the predefined meteorological parameters’ names as strings and the same index (i.e.
a vector of names). Finally a vector of doubles (data vector) stores the actual data20

for each meteorological parameter, according to the index defined in the static map
or names vector. When an extra parameter is added, an new entry is created in the
names vector as well as a new entry in the data vector at the same index. The total
number of defined meteorological parameters is updated, making it possible to access
a given meteorological field either by index (looping between zero and the total number25

of fields), by name (as string) or by predefined name (as enum). Methods to retrieve
an index from a string or a string from an index (or enum) are also available.
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3.5 Grids

Grids have been implemented for one dimensional to four dimensional data as tem-
plates in the Array classes in order to accommodate different data types. They are
based on the standard vector container and define the appropriate access by index
(currently as row major order) as well as several helper methods (retrieving the min-5

imum, maximum or mean value of the data contained in the grid, for example) and
standard arithmetic operators between grids and between a grid and a scalar. A ge-
olocalized version has been implemented in the GridObject classes that brings about
added safety in the calling code by making it possible to check that two grids refer to
the same domain before using them.10

3.6 Digital elevation model

A special type of two dimensional grid (based on the Grid2DObject class) has been
designed to contain digital elevation model (DEM) data. This DEMObject class auto-
matically computes the slope, azimuth and curvature as well as the surface normal
vectors. It lets the developer choose between different algorithms: maximum downhill15

slope (Dunn and Hickey, 1998), four neighbours algorithm (Fleming and Hoffer, 1979)
or two triangle method (Corripio, 2003) with an eight-neighbour algorithm for border
cells (Horn, 1981). The azimuth is always computed using (Hodgson, 1998). The two
triangle method has been rewritten in order to be centered on the actual cell instead of
node-centered, thus working with a local 3×3 grid centered around the pixel of interest20

instead of 2×2. The normals are also computed as well as the curvatures, using the
method of (Liston and Elder, 2006).

The evaluation of the local slope relies on the eight immediate neighbours of the
current cell. Because this offers only a limited number of meaningful combinations for
computing the slope, some more recent slope calculation algorithms that have been25

explored are actually exactly equivalent to the previously listed algorithms. In order
to transparently handle the special cases represented by the borders (including cells
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bordering holes in the digital elevation model), a 3×3 grid is filled with the content of the
cells surrounding the current cell. Cells that cannot be accessed (because they don’t
exist in the DEM) are replaced by nodata values. Then each slope algorithm works
on this subgrid and implements workarounds if some required cells are set to nodata
in order to be able to provide a value for each pixel that it received. This makes the5

handling of special cases very generic and computationally efficient.
Various useful methods for working with a DEM are also implemented, for example

the possibility to compute the horizon of a grid cell or the terrain following distance
between two points.

4 Components10

4.1 Data flow overview

At the core of MeteoIO lies the process of getting for a specific time step either a set of
meteorological data or a set of spatially interpolated meteorological data. The model
using MeteoIO for getting its meteorological time series relies on the very simple call
given in listing 1. This call returns a vector containing all the meteorological data that15

could be provided at the requested date, grouped by stations with their metadata. Each
parameter either contains nodata or the preprocessed value following the configuration
by the end user.

A model requiring spatially interpolated values will use the call shown in listing 2.
This call returns a grid filled with the spatially interpolated parameter as specified by20

meteoparam at the requested date over the provided DEM. If the grid could not be filled
according to the requirements provided by the user, the grid will be empty and the call
will return false.

In the background, within MeteoIO, the process of providing the forcing data to the
numerical model according to the constraints specified by the user has been split into25

several steps (see Fig. 4):

3609

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/3595/2014/gmdd-7-3595-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/3595/2014/gmdd-7-3595-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 3595–3645, 2014

The MeteoIO library

M. Bavay and T. Egger

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1. getting the raw data;

2. filtering and correcting the data;

3. temporally interpolating (or resampling) the data if necessary;

4. generating data from parametrizations if everything else failed;

5. spatially interpolating the data if requested.5

Practically, the raw data is read by the IOHandler component through a system of
plug-ins. These plug-ins are low level implementations providing access to specific
data sources and can easily be developed by a casual developer. The data is read in
bulk, between two timestamps as defined by the BufferedIOHandler that implements
a raw data buffer in order to prevent having to read data out of the data source for10

the next caller’s query. This buffer is then given for filtering and resampling to the Me-
teoProcessor. This will first filter (and correct) the whole buffer (by passing it to the
ProcessingStack ) since benchmarks have shown that processing the whole buffer at
once is less costly than processing individually each time steps as they are requested.
The MeteoProcessor then temporally interpolates the data to the requested time step15

(if necessary) by calling the Meteo1DInterpolator. A last resort stage is provided by the
DataGenerator that attempts to generate the potentially missing data (if the data could
not be temporally interpolated) using parametrizations.

Finally, the data is either returned as such or spatially interpolated using the Me-
teo2DInterpolator. The whole process is transparently managed by the IOManager that20

remains the visible side of the library for requesting meteorological data. The IOMan-
ager offers a high level interface as well as some configuration options, allowing for
example to skip some of the processing stages. The caller can nevertheless decide to
manually call some of these components since they expose a developer-friendly, high
level API.25
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4.2 Data reading

All the necessary adaptations for reading data from a specific data source are handled
by a specifically construed plug-in for the respective data source. The interface exposed
by the plug-ins is very simple and their tasks very focused: they must be able to read
the data for a specific time interval or a specific parameter (for gridded data) and fill5

the MeteoIO data structures, converting the units to International System of Units (SI).
Similarly, they must be able to receive some MeteoIO data structures and write them
out. Several helper functions and classes are available to simplify the process. This
makes it possible for a casual developer to readily develop his own plug-in, supporting
his own data source, with very little overhead.10

In its current version MeteoIO includes plug-ins for reading and/or writing time se-
ries and/or grids from Oracle and PostgreSQL databases, the Global Sensor Network
(GSN) REST API (Michel et al., 2009), Cosmo XML (cos, 2013), GRIB, NetCDF, ARC
ASCII, ARPS, GRASS, PGM, PNG, GEOtop, Snowpack and Alpine3D native file for-
mats and a few others.15

The proper plug-in for the user-configured data source is instantiated by the IOHan-
dler that handles raw data reading. Usually, the IOHandler is itself called by the Buffere-
dIOHandler in order to buffer the data for subsequent reads. The BufferedIOHandler is
most often called with a single timestamp argument, computes an appropriate time
interval and calls IOHandler with this time interval, filling its internal buffer.20

4.3 Data processing

IOManager utilises the methods exposed by the MeteoProcessor. This is a high
level interface that transparently encloses both the data processing and the resam-
pling stages. These two stages are handled by the ProcessingStack and the Me-
teo1DInterpolator, respectively.25

The ProcessingStack reads the user configured filters and processing elements and
builds a stack of ProcessingBlock objects for each meteorological parameter and in
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the order declared by the end user. The time series are then passed to each individual
ProcessingBlock, each block being one specific filter or processing implementation.
These have been divided into three categories:

– processing elements;

– filters;5

– filters with windowing.

The last two categories stem purely from implementation considerations: filtering a data
point based on a whole data window yields different requirements than filtering a data
point independently of the data series. Filters represent a form of processing where
data points are either kept or rejected. The processing elements on the other hand10

alter the value of one or more data points. Filters are used to detect and reject invalid
data while processing elements are used to correct the data (for instance, correcting
a precipitation input for undercatch or a temperature sensor for a lack of ventilation).
These processing elements can also be used for sensitivity studies, by adding an offset
or multiplying by a given factor.15

As shown in Fig. 6, each meteorological parameter is associated with a Pro-
cessingStack object that contains a vector of ProcessingElement objects (generated
through an object factory). Each ProcessingElement object implements a specific
data processing algorithm. The meteorological parameters mapping to their Process-
ingStack is done in a standard map object.20

4.3.1 Filters

Filters are used to detect and reject invalid data and therefore either keep or reject data
points but don’t modify their value. Often an optional keyword “soft” has been defined
that gives some flexibility to the filter. The following filters have been implemented:

min, max, min_max. These filters reject out of range values or reset them to the25

closest bound if “soft” is defined;
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rate. This filters out data points if the rate of change is larger than a given value. Both
a positive and a negative rate of change can be defined, for example for a different snow
accumulation and snow ablation rate;

standard deviation. All values outside of ŷ ±3σ are removed;
median absolute deviation. All values outside ŷ ±3σMAD are removed;5

Tukey. Spike detection following (Goring and Nikora, 2002);
unheated rain gauge. This removes precipitation inputs that don’t seem physical.

The criteria that is used is that for precipitation to really occur, the air and surface tem-
peratures must be at most three degrees apart and relative humidity must be greater
than 50 %. This filter is used to remove invalid measurements from snow melting in an10

unheated rain gauge after a snow storm.

4.3.2 Processing elements

Processing elements represent processing that alters the value of one or more data
points, usually to correct the data. The following processing elements have been im-
plemented:15

mean, median or wind average. Averages over a user-specified period. The period is
defined as a minimum duration and a minimum number of points. The window centering
can be specified, either left, center or right. The wind averaging performs the averaging
on the wind vector;

Exponential or Weighted Moving Average. Smooths the data either with an Expo-20

nential or Weighted Moving Average (EMA, WMA respectively) smoothing algorithm;
2 poles, low pass Butterworth. Low pass filter according to (Butterworth, 1930);
add, mult, suppr. This makes it possible to add an offset or multiply by a given factor,

for sensitivity studies or totally delete a given meteorological parameter;
unventillated temperature sensor correction. Corrects a temperature measurement25

for the radiative heating on an unventilated sensor, according to (Nakamura and Mahrt,
2005) or (Huwald et al., 2009);
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undercatch. Several corrections are offered for precipitation undercatch, either fol-
lowing (Hamon, 1972; Førland and Institutt, 1996) or following the WMO corrections
(Goodison et al., 1997). Overall, the correction coefficients for fifteen different rain
gauges have been implemented. Since the WMO corrections were not available for
shielded Hellmann rain gauges, a fit has been computed based on published data5

(Wagner, 2009; Daqing et al., 1999). The correction for the Japanese RT-3 rain gauges
has been implemented following Yokoyama et al. (2003). It is also possible to specify
fixed correction coefficients for snow and mixed precipitation;

precipitation distribution. The precipitation sum can be distributed over preceding
timesteps. This is useful for example when daily sums of precipitation are written at the10

end of the day in an otherwise hourly data set.
The data window can also be configured by the end user: by default the data is

centered around the requested data point. But it is also possible to force the data
window to be left or right centered. An extra option “soft” allows the data window to be
centered as specified by the end user if applicable or to shift the window according to15

a “best effort” strategy if the data don’t permit the requested centering.

4.4 Resampling

If the timestamp requested by the caller is not present in the data (either it has been
filtered out or it was not present from the beginning), temporal interpolations will be
performed. The Meteo1DInterpolator is responsible for calling a temporal interpolation20

method for each meteorological parameter as configured by the end user. The end
user chooses between the following methods of temporal interpolation for each mete-
orological parameter separately:

no interpolation. If data exists for the requested timestamp it will be returned or re-
main nodata otherwise;25

nearest neighbour. The closest data point in the raw data that is not nodata is re-
turned;

linear. The value is linearly interpolated between the two closest data points;
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accumulation. The raw data is accumulated over the period provided as argument;
daily solar sum. The potential solar radiation is generated as to match the daily sum

as provided in the input data.
These methods must be able to both downsample and upsample according to the

needs (except the daily solar sum). These methods take a time series as argument5

and a timestamp and return the interpolated value for a given meteorological parame-
ter. The ability to support an arbitrary and variable sampling rate for both the input and
output data prevents the utilisation of well known signal analysis algorithms. Moreover
some meteorological parameters require a specific processing, such as precipitation
that must be accumulated over a given period. The following approach has therefore10

been implemented (see in Fig. 7): for each requested data point, if the exact times-
tamp cannot be found or in case of reaccumulation, the index where the new point
should be inserted will be sought first. Then the previous valid point is sought within
a user-configured search distance. The next valid point is then sought within the user-
configured search distance from the first point. Then the resampling strategy (near-15

est neighbour, linear or reaccumulation) uses these points to generate the resampled
value. Other resampling algorithms may be implemented by the user that would use
more data points.

When no previous or next point can be found, the resampling extrapolates the re-
quested value by looking at more valid data points respectively before or after the20

previously found valid points. Because of the significantly increased risk of generating
a grossly out of bound value, this behaviour must be explicitly enabled by the end user.

4.5 Data generators

In order to be able to return a value for a given timestamp there must be enough data
available in the original data source. This data has to pass the filters set up by the25

end user and may then be used for resampling. In case that data is absent or filtered
out there is still a stage of last resort: the data can be generated by a parametriza-
tion relying on other parameters. The end user configures a list of algorithms for each
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meteorological parameter. These algorithms are implemented as classes inheriting
from the GeneratorAlgorithms. The DataGenerator class acts as their high level in-
terface. The algorithms range from very basic, such as assigning a constant value,
to quite elaborate. For instance the measured incoming solar radiation is compared
to the potential solar radiation resulting in a solar index. The solar index is used in5

a parametrization to compute a cloud cover that is given to another parametrization to
compute a long wave radiation.

The GeneratorAlgorithms receive a set of meteorological parameters for one point
and one timestamp. The DataGenerator walks through the user configured list of gen-
erators, in the order of their declaration by the end user, until a valid value can be10

returned. The returned value is inserted into the data set and either returned to the
caller or used for spatial interpolations.

The following generators have been implemented:
standard pressure. Generates a standard pressure that only depends on the eleva-

tion;15

constant. Generates a constant value as provided by the user;
sinusoidal. Generates a value with sinusoidal variation, either on a daily or a yearly

period. The minimum and maximum values are given as arguments as well as the
position of the first minimum;

clearsky. Generates a clear sky incoming long wave radiation, choosing between20

several parametrizations (Brutsaert, 1975; Dilley and O’brien, 1998; Prata, 1996);
allsky. Generates an incoming long wave radiation based on cloudiness. If there is

no cloudiness available, it will be parametrized from the solar index (the ratio between
measured incoming short wave radiation and potential radiation, Iqbal, 1983) according
to Kasten and Czeplak (1980). If no incoming short wave radiation is available but25

a reflected short wave radiation is available, a snow albedo of 0.85 will be assumed
for measured snow heights greater than 10 cm and a grass albedo of 0.23 otherwise.
If no measured snow height is available, a constant 0.5 albedo will be assumed. It is
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possible to chose between several parametrizations (Unsworth and Monteith, 1975;
Omstedt, 1990; Crawford and Duchon, 1999; Konzelmann et al., 1994);

potential radiation. Generate an incoming short wave radiation (or reflected short
wave radiation) from a measured long wave radiation using a reciprocal Unsworth gen-
erator.5

4.6 Spatial interpolations

If the caller requests spatial grids filled with a specific parameter, two cases may arise:
either the data plug-in reads the data as grids and can directly return the proper grid or
it reads the data as point measurements. In this case, the data must be spatially inter-
polated. The end user configures a list of potential algorithms and sets the respective10

arguments to use for each meteorological parameter.
The Meteo2DInterpolator reads the user configuration and evaluates for each pa-

rameter and at each time step which algorithm should be used for the current time step,
using a simple heuristic provided by the interpolation algorithm itself. Of course, relying
on simple heuristics for determining which algorithm should be used does not guaran-15

tee that the best result will be attained but should nonetheless suffice most of the time.
This implies a trade-off between accuracy (selecting the absolutly best method) and
efficiency (not spending too much time selecting a method that most probably is the
one determined by the heuristic). The objective is to ensure robust execution despite
the vast diversity of conditions. The number of available data points often eminently20

influences the applicability of a given algorithm and without the flexibility to define fall-
back algorithms frequent disruptions of the process in an operational scenario might
ensue.

Most spatial interpolations are performed using a trend/residuals approach: the point
measurements are first detrended in elevation, then the residuals are spatially interpo-25

lated and for each pixel of the resulting grid the elevation trend back is applied. Of
course, the user can specify an algorithm that does not include detrending.
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The following spatial interpolations have been implemented: filling the domain with
a constant value (using the average of all stations), filling the domain with a constant
value with a lapse rate (assuming the average value occurs at the average of the eleva-
tions), filling the domain with a standard pressure that only depends on the elevation at
each cell, spatially interpolating the dew point temperature before converting it back to5

a relative humidity at each cell as in Liston and Elder (2006), spatially interpolating the
atmospheric emissivity before converting it back to an incoming long wave radiation at
each cell, inverse distance weighting (IDW) with or without a lapse rate, spatially inter-
polating the wind speed and correcting it at each point depending on the local curvature
as in Liston and Elder (2006), spatially interpolating the precipitation, then pushing the10

precipitation down the steep slopes as in Spence and Bavay (2013), ordinary krig-
ing with or without a lapse rate as in Goovaerts (1997) with variogram models as in
Cressie (1992) and finally the possibility to load user-supplied grids. It is also possible
to activate a “pass-through” method that simply returns a grid filled with nodata.

Relying on the fall-back mechanism described above it is, for example, possible to15

configure the spatial interpolations to read user-supplied grids for some specific time
steps, reverting to ordinary kriging with a lapse rate if enough stations can provide data
and no user-supplied grids are available for this time step, reverting to filling the grid
with the measurements from a single station with a standardized lapse rate if nothing
else can be done. Everything happens transparently from the point of view of the caller.20

4.6.1 Lapse rates

Due to the fact that for many meteorological parameters the altitudinal lapse rates are
a dominant factor in mountainous areas, properly handling them is of utmost impor-
tance for spatial interpolations. This becomes a real issue for fully automated simula-
tions: it is possible that some outliers significantly degrade the computed lapse rate or25

that no real lapse rate can be found in the data. Therefore the following process is used
to determine the lapse rate:
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1. the lapse rate is computed;

2. if the lapse rate’s correlation coefficient is better than a 0.7 threshold, the deter-
mined lapse rate will be used as such;

3. if this is not the case, the point that degrades the correlation coefficient the most
will be sought: for each point, the correlation coefficient is computed without this5

point. The point whose exclusion leads to the highest correlation coefficient is
suppressed from the data set for this meteorological parameter and at this time
step;

4. if the correlation coefficient after excluding the point determined at 3 is better than
the 0.7 threshold, the determined lapse rate will be used as such, otherwise the10

process will loop back to point 3.

The process runs until at most 15 % of the original data set points have been sup-
pressed or when the total number of points falls to four, in order to keep a reasonable
number of points in the data set. This is illustrated in Fig. 8: the initial set of points has
a correlation coefficient that is lower than the threshold, leading to the removal of the15

three points in the right hand side panel, resulting in a coefficient above the threshold.
Finally, most of the spatial interpolations algorithms offer their own fall-back for the

lapse rate: it is often possible to manually specify a lapse rate to be used when the data-
driven lapse rate has a correlation coefficient that remains less than the 0.7 threshold.

4.7 Grid rescaling20

Rescaling gridded meteorological data to a different resolution is often necessary for
reading a grid (and bringing it in line with the DEM grid) or for writing a grid out (for
example, as a graphical output). Since meteorological parameters at the newly created
grid points mostly depend on their immediate neighbours and in order to keep the
computational costs low, standard image processing techniques have been used: the25
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rescaling can either be done by applying the nearest neighbour, bi-linear or cubic B-
spline algorithms. These algorithms are very efficient and appropriate for rescaling
grids to a higher resolution without any matching DEM since no gradient correction will
be performed.

4.8 Miscellaneous utilities5

In order to provide common algorithms to the various components, several classes
have been designed that implement well known algorithms. These classes have been
implemented in quite a generic way, striving for readability, stability – no surprising
behaviour – and acceptable performance.

A basic set of monodimensional statistical algorithms have been implemented as10

they are often required by the filters or the spatial interpolation methods. These are
completed by a least square regression solver that can be used on any statistical model
by inheriting from a base class and implementing the model itself. This required a basic
set of arithmetic matrix operations, also required for kriging. The Matrix class strives to
remain as close as possible to the standard mathematical notation and implements all15

the basic operations: addition, subtraction, multiplication, determinant, transposition.
The generic inversion is implemented by first performing the LU factorization (using the
Doolittle algorithm Duff et al., 1986) and then backward and forward solving of LU×
A−1 = I (Press et al., 1992). This represents a good balance between complexity and
efficiency since more advanced methods provide benefits only for very large matrices.20

For the case of tridiagonal matrices, the Thomas algorithm is offered (Thomas, 1949).
In order to isolate platform specific code, several classes and functions have been

implemented: functions dealing with file and path handling, such as checking if a file
name is valid, if a file exists, the copying of files, extracting a path or an extension and
microsecond resolution timers. The timers are offered for benchmarking purposes with25

a resolution of up to 1 ns with very low overhead.
Finally, as required by several filters and data generators, a set of algorithms for com-

puting atmospheric and solar properties have been implemented. The solar position is
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computed with the Meeus algorithm (Meeus, 1998) and the potential radiation accord-
ing to Iqbal (1983). Reprojection functions (between beam, horizontal and slope) are
also offered alongside.

4.9 Optimizations

In order to optimize the algorithms based on distances, such as inverse distance5

weighting, it has been necessary to optimize the computation of expressions such as
1/

√
x. This has been achieved through a fast inverse square root approximation im-

plementation (Lomont, 2003) that has been shown to give at most 1.7 % relative error
and deliver at least a four times speed up. Similarly, a method for fast computation of
cubic roots has been implemented based on a single iteration Halley’s method with10

a bit hack approximation providing the seed (Lancaster, 1942) and a fast computation
of powers based on bit hacks and exponentiation by squaring (Montgomery, 1987).
These are grouped in a specific namespace and header file alongside other numerical
optimizations (Hastings et al., 1955).

5 Benchmarks15

Several numerical models developed by different institutions rely on MeteoIO for their
I/O needs. Several specialized applications (mostly as web services) have also been
developed in different countries based on MeteoIO. It is also used regularly for several
warning systems and research projects around the world.

In order to check the design goals against real world applications, some benchmarks20

are presented in this section. These have been conducted on a 2006 laptop powered
by a 32 bits Intel Core Duo mobile processor (T2300). This processor runs at 1.66 GHz
with 2 Mb of L2 cache and has access to 2.5 Gb of RAM. For single thread perfor-
mance, it reaches a CPU Mark of 519 when modern Intel i7 achieve between 2000
and 2300 (http://www.cpubenchmark.net/). The benchmarks have been compiled by25
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the GNU Compiler Collection (GCC) version 4.7.2 both for C++, C and Fortran. This
hardware should represent the lower end of what can be found at the workplace but
with up-to-date software.

5.1 Ease of extension

In order to check if it is really easy for third parties to contribute to MeteoIO, a test was5

set up asking participants to develop a basic filter. The filter that had to be developed
is a simple filter on the incoming long wave radiation, rejecting all data outside εminσT

4

and εmaxσT
4.

The test was conducted by providing each participant, working alone, with a sheet
with instructions and questions. First, the participants were asked some basic ques-10

tions about themselves and their computer science abilities, focusing on issues rele-
vant for a programming task involving a compiled programming language. Then the
participants were instructed to install the required development components as well as
MeteoIO by referral to the online documentation and optional help if they got stuck.
Once their system was properly configured (and checked by running a simple test),15

they were asked to implement the required filter following the official documentation
and without assistance. This task was divided into several subtasks, each timed indi-
vidually:

– writing an empty filter;

– writing the code;20

– compiling the empty filter;

– running the empty filter on a test data set;

– writing the real filter;

– writing the code;

– compiling the filter;25
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– running the filter on a test data set;

– writing the filter’s documentation;

The test has been performed by eight PhD students who have some ability to use
computers for their daily work (mostly using Matlab or R) with only three participants
having a previous experience in C or C++. The results of this test are presented in5

Fig. 9.
Based on the response of the test users themselves, the initial programming abilities

were not really a major factor in their achievements but mostly the ability to follow the
step by step instructions. Since only a limited number of users did participate in this
test, this tends to show a worst case scenario by being overly sensitive to specific10

issues: one user spent quite a lot of time trying to make his test work, only to realize
that he was not testing with his latest changes, another one used a wrong test dataset,
etc

The first task, that is writing an empty filter, would usually be skipped by programers
who already developed at least one such filter but this was included in order to better15

discriminate between the overhead (ie integrating one’s development within MeteoIO)
and the intrinsic complexity of the required processing (i.e. the logic of the filter that had
to be implemented). As is seen in Fig. 9, the overhead for an average casual contributor
is around 30–40 min (keeping in mind the majority of the users that have been tested
had no previous experience in C or C++).20

5.2 Meteorological data processing benchmarks

Reading meteorological data stored in an ASCII file bears a significant overhead. The
file needs to be read line by line, each line needs to be split up based on a prede-
fined delimiter, the values need to be converted from strings to their respective data
types and the data need to be stored in memory for further processing. A comparative25

illustration of different programming environments and their performance in completing
the aforementioned task is given in Fig. 10. The GNU compilers gcc, g++ and gfortran
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were used to obtain the benchmark executables. Clearly C++ and MeteoIO, which is
programmed in C++ and utilises the GNU STL and streams implementations, show
the same performance. The efficient dynamic memory management gives C the over-
all advantage, whereas Fortran95 (static) shows good performance for parsing values
to doubles with the drawback, that the exact layout and size of the file need to be known5

at compile time. Allowing these properties to be dynamic, slows down the performance.
Apart from only reading the data, MeteoIO performs a unit conversion and finally stores
the data in MeteoData objects which are then used for further processing and exposed
the user.

Figure 11 illustrates the performance gain in the course of 3 years of MeteoIO de-10

velopment when resampling hourly data for one station to 20 min. Data is read from
a SMET ASCII file that contains hourly measurements of 11 parameters for a period of
12 years for one weather station. The most significant performance gain was achieved
between versions 2.1.1 and 2.1.2 following the redesign of the core MeteoData class,
representing all measured parameters of one station at one moment in time. Since15

MeteoData objects are copied and instantiated during all processing steps focusing
on the performance of the copy constructor yielded a spectacular performance boost.
Decreasing the time spent on the construction of MeteoData objects was paramount
to making the library performant. Further improvements leading up to version 2.1.3 are
mainly comprised of an efficient use of file pointers regarding I/O and a redesign of the20

processing capabilities, namely reducing the amount of copies necessary when deal-
ing with series of data points during filtering and resampling. Optimizations in all parts
of the code bring about a constant improvement of the MeteoIO performance albeit
a significant increase of features and requirements. The strategy throughout develop-
ment is to write correct code following best practice design rules, to then profile it using25

static and dynamic analysis tools as layed out in 2.7 and to optimize where significant
improvements can be expected based on the results of the profiling. Some technically
well-engineered features, such as dynamic plug-in loading at runtime, have proven un-
necessary and were either adapted to meet actual user demands or removed.
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5.3 Spatial interpolations benchmarks

Unsurprisingly, most of the spatial interpolation algorithms scale as O(n). However,
since there is some overhead (constructing the required spatial interpolator, setting the
grid metadata, gathering the necessary data) it is interesting to see how the real world
scalability is. To this effect, the “pass-through” interpolation has been used that fills the5

grid with nodata by calling the optimized STL methods on the underlying data container.
Different spatial interpolations have been benchmarked for different grid sizes, ranging
from one cell to 25 million cells. Two scenarios have been used: one providing seven
meteorological stations as input and one providing fourteen meteorological stations as
input.10

The results are shown in Fig. 12. The linear behaviour starts to be visible after around
0.7 ms which would then be the total overhead for spatial interpolations. This overhead
also depends on the chosen algorithm: for example the simple pass-through has a very
low 0.2 ms overhead (there is nothing to prepare before filling the grid) to 1.2 ms for
ordinary kriging with fourteen stations (the necessary matrices have to be computed15

with the station data before filling the grid).
One can also witness the effect of STL optimizations: the pass-through interpolation

fills the whole grid with the same constant value, relying on the STL to perform the
task. On the other hand, the CST interpolation fills the grid with a constant value but
only for cells that have an elevation in their associated DEM, therefore not relying on an20

STL method for doing it. This makes it 3.5 times slower. When using the same method
but with detrending, not only one pass through the grid but three passes are required
(detrending, filling the grid, retrending) leading to this factor two visible in Fig. 12. When
using an inverse distance weighting, the distance has to be computed for each pixel.
This depends on the number of stations (thus the difference between IDW for seven or25

fourteen stations) but this also significantly slows down the processing (despite using
a fast approximation for calculating the distance). This costs an order of magnitude
compared to a simple constant fill. Finally, the ordinary kriging requires to fill and invert
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a matrix of dimension Nstations ×Nstations and then to perform a matrix multiplication for
each pixel. This leads to a larger overhead (visible for small grids that exhibit a non-
linear behaviour depending on the number of stations) and another twenty times slowed
down compared to IDW_LAPSE.

6 Code availability5

The MeteoIO library is available under the GNU Lesser General Public License v3.0
(LGPL v3) on http://models.slf.ch/p/meteoio/ both as source code (from the source ver-
sion control system or as packages) or as precompiled binaries for various platforms.
Stable releases are announced on https://freecode.com/projects/meteoio.

The documentation must be generated from the source code or is available as html10

in the precompiled packages. The documentation for the last stable release is avail-
able online at http://models.slf.ch/docserver/meteoio/html/index.html. Detailed installa-
tion instructions are available at http://models.slf.ch/p/meteoio/page/Getting-started/.

7 Conclusions

In order to split the data preprocessing and data consumption tasks in numerical mod-15

els, the MeteoIO library has been developed. This has allowed the numerical models
to focus on their core features and to remove a lot of data preprocessing code as well
as to peek into the data that is sent to the core numerical routines. This has also lead
to fruitful developments in the preprocessing stage much beyond what was originally
performed on the numerical models. A careful design made it possible for casual users20

to easily contribute to data filters or parametrizations. This ease of contribution to Me-
teoIO make it a great test bed for new preprocessing methods with a direct link to
actual numerical models. A contributor with little or no previous C++ experience can
contribute simple algorithms with a relatively minor time investment. In terms of per-
formance, continuous benchmarking and profiling have lead to major improvements25
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and keep the preprocessing computational costs well balanced compared to the data
acquisition costs.

Today, the MeteoIO library offers great flexibility, reliability and performance and has
been adopted by several models for their I/O needs. These models have all benefited
from the shared developments in MeteoIO and as such offer an increased range of5

application and an increased robustness in regard to their forcing data.

The Supplement related to this article is available online at
doi:10.5194/gmdd-7-3595-2014-supplement.
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size_t getMeteoData(

const Date& i_date,

std::vector<MeteoData>& vecMeteo

);

Listing 1. MeteoIO call used by models to request all available meteorological time series for a given time step

bool getMeteoData(

const Date& date,

const DEMObject& dem,

const MeteoData::Parameters& meteoparam,

Grid2DObject& result

);

Listing 2. MeteoIO call used by models to request spatially interpolated parameters for a given time step

In the background, within MeteoIO, the process of providing the forcing data to the numerical315

model according to the constraints specified by the user has been split into several steps (see Fig. 4):

1. getting the raw data;

2. filtering and correcting the data;

3. temporally interpolating (or resampling) the data if necessary;
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Fig. 4. Simplified view of the MeteoIO dataflow.

12

Listing 1. MeteoIO call used by models to request all available meteorological time series for
a given time step.
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size_t getMeteoData(

const Date& i_date,

std::vector<MeteoData>& vecMeteo

);

Listing 1. MeteoIO call used by models to request all available meteorological time series for a given time step

bool getMeteoData(

const Date& date,

const DEMObject& dem,

const MeteoData::Parameters& meteoparam,

Grid2DObject& result

);

Listing 2. MeteoIO call used by models to request spatially interpolated parameters for a given time step

In the background, within MeteoIO, the process of providing the forcing data to the numerical315

model according to the constraints specified by the user has been split into several steps (see Fig. 4):

1. getting the raw data;

2. filtering and correcting the data;

3. temporally interpolating (or resampling) the data if necessary;
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Fig. 4. Simplified view of the MeteoIO dataflow.
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Listing 2. MeteoIO call used by models to request spatially interpolated parameters for a given
time step.
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Numerical
Model

preprocessing

Data

configuration

User

Fig. 1. Isolation of the data reading and preprocessing routines from the numerical model.

– Let the end user configure the whole data reading and preprocessing in a configuration file that

can be saved for archiving or later use.

2 Architecture90

Using the design philosophy guidelines laid out in section 1.3 and in order to be able to reuse this

software package in other models, we decided to implement this software package as a library named

MeteoIO. We chose the C++ language in order to benefit from the object oriented model as well

as good performance and relatively easy interfacing with other programming languages. We also

decided to invest a significant effort in documenting the software package both for the end users and95

for developers who would like to integrate it into their own models. More architectural principles

are laid out in the sections below while the implementation details are given in sections 3 and 4.

2.1 Actors

The question of proper role assignment (Yu and Mylopoulos, 1994), or finding out who should

decide, is central to the development of MeteoIO: carefully choosing if the end user, the model100

relying on MeteoIO or MeteoIO itself is the appropriate actor to take a specific decision has been a

recurring question in the general design. For example when temporally resampling data, the method

should be chosen by the end user while the sampling rate is given by the numerical model and the

implementation details and error handling belong to MeteoIO.

4

Figure 1. Isolation of the data reading and preprocessing routines from the numerical model.
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2.2 Dependencies105

When complex software packages grow, they often require more and more external dependencies

(as third party software libraries or third party tools). When new features are added, it is natural to

try to build on achievements of the community and not “reinvent the wheel”. However this also has

some drawbacks:

– these third party components must be present on the end user’s computer;110

– these components need to be properly located when compiling or installing the software pack-

age;

– these components have their own evolution, release schedule and platform support.

Therefore, as relying more on external components reduces the core development effort, it signifi-

cantly increases the integration effort. One must then carefully balance these two costs and choose115

the solution that will yield the least long term effort.

Estimating that a complex integration issue represents a few days of work and a non negligible

maintenance effort, core MeteoIO features that were feasible to implement within a few days were

redeveloped instead of integrating existing solutions. For the more peripheral features (like output

plug-ins) we decided to rely on the most basic libraries at hand, disregarding convenient wrappers120

which would introduce yet another dependency, and to give the user the possibility to decide which

features to enable at compile time. Accordingly, MeteoIO requires no dependencies by default when

it would have required more than fifteen if no such mitigation strategy had been taken. A handful of

dependencies can be activated when enabling all the optional features.

2.3 Manager/Worker Architecture125

between high and low level
Complex, bridges the gap

Easy to expand, low level

Easy to use, high level

expands...

calls API...

User

Interface class

Worker class

Manager class

A
P
I

E
X
P

Fig. 2. Manager/worker architecture; very often the interface and the manager are implemented in the same

class, the interface being the public interface and the manager being the private implementation.

5

Figure 2. Manager/worker architecture; very often the interface and the manager are imple-
mented in the same class, the interface being the public interface and the manager being the
private implementation.
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network).

extra
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getData()

from enum
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from index,

from name,

from enum

Fig. 3. Meteorological data set internal structure.

A static map does the mapping between predefined meteorological parameters (defined as an

enum) and an index. A vector of strings stores a similar mapping between the predefined meteoro-

logical parameters’ names as strings and the same index (i.e. a vector of names). Finally a vector of

doubles (data vector) stores the actual data for each meteorological parameter, according to the index265

defined in the static map or names vector. When an extra parameter is added, an new entry is created

in the names vector as well as a new entry in the data vector at the same index. The total number of

defined meteorological parameters is updated, making it possible to access a given meteorological

field either by index (looping between zero and the total number of fields), by name (as string) or by

predefined name (as enum). Methods to retrieve an index from a string or a string from an index (or270

enum) are also available.

3.5 Grids

Grids have been implemented for one dimensional to four dimensional data as templates in the

Array classes in order to accommodate different data types. They are based on the standard vector

container and define the appropriate access by index (currently as row major order) as well as several275

helper methods (retrieving the minimum, maximum or mean value of the data contained in the grid,

for example) and standard arithmetic operators between grids and between a grid and a scalar. A

geolocalized version has been implemented in the GridObject classes that brings about added safety

in the calling code by making it possible to check that two grids refer to the same domain before

using them.280

10

Figure 3. Meteorological data set internal structure.
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size_t getMeteoData(

const Date& i_date,

std::vector<MeteoData>& vecMeteo

);

Listing 1. MeteoIO call used by models to request all available meteorological time series for a given time step

bool getMeteoData(

const Date& date,

const DEMObject& dem,

const MeteoData::Parameters& meteoparam,

Grid2DObject& result

);

Listing 2. MeteoIO call used by models to request spatially interpolated parameters for a given time step

In the background, within MeteoIO, the process of providing the forcing data to the numerical315

model according to the constraints specified by the user has been split into several steps (see Fig. 4):

1. getting the raw data;

2. filtering and correcting the data;

3. temporally interpolating (or resampling) the data if necessary;
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Fig. 4. Simplified view of the MeteoIO dataflow.
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Figure 4. Simplified view of the MeteoIO dataflow.
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4. generating data from parametrizations if everything else failed;320

5. spatially interpolating the data if requested.
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Fig. 5. Meteorological data reading and processing workflow. The classes marked API are designed to be called

by the user and the classes marked EXP are designed to be expanded by the user.

Practically, the raw data is read by the IOHandler component through a system of plug-ins. These

plug-ins are low level implementations providing access to specific data sources and can easily be

developed by a casual developer. The data is read in bulk, between two timestamps as defined by the

BufferedIOHandler that implements a raw data buffer in order to prevent having to read data out of325

the data source for the next caller’s query. This buffer is then given for filtering and resampling to

the MeteoProcessor. This will first filter (and correct) the whole buffer (by passing it to the Process-

ingStack) since benchmarks have shown that processing the whole buffer at once is less costly than

processing individually each time steps as they are requested. The MeteoProcessor then temporally

interpolates the data to the requested time step (if necessary) by calling the Meteo1DInterpolator. A330

last resort stage is provided by the DataGenerator that attempts to generate the potentially missing

data (if the data could not be temporally interpolated) using parametrizations.

Finally, the data is either returned as such or spatially interpolated using the Meteo2DInterpolator.

The whole process is transparently managed by the IOManager that remains the visible side of the

library for requesting meteorological data. The IOManager offers a high level interface as well as335

some configuration options, allowing for example to skip some of the processing stages. The caller

13

Figure 5. Meteorological data reading and processing workflow. The classes marked API are
designed to be called by the user and the classes marked EXP are designed to be expanded
by the user.
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data series. Filters represent a form of processing where data points are either kept or rejected. The370

processing elements on the other hand alter the value of one or more data points. Filters are used

to detect and reject invalid data while processing elements are used to correct the data (for instance,

correcting a precipitation input for undercatch or a temperature sensor for a lack of ventilation).

These processing elements can also be used for sensitivity studies, by adding an offset or multiplying

by a given factor.375
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Fig. 6. Internal structure of the ProcessingStack.

As shown in Fig. 6, each meteorological parameter is associated with a ProcessingStack object

that contains a vector of ProcessingElement objects (generated through an object factory). Each

ProcessingElement object implements a specific data processing algorithm. The meteorological

parameters mapping to their ProcessingStack is done in a standard map object.

4.3.1 Filters380

Filters are used to detect and reject invalid data and therefore either keep or reject data points but

don’t modify their value. Often an optional keyword “soft” has been defined that gives some flexi-

bility to the filter. The following filters have been implemented:

min, max, min max. These filters reject out of range values or reset them to the closest bound if “soft” is

defined;385

rate. This filters out data points if the rate of change is larger than a given value. Both a positive and a negative

rate of change can be defined, for example for a different snow accumulation and snow ablation rate;

standard deviation. All values outside of ŷ± 3σ are removed;

median absolute deviation. All values outside ŷ± 3σMAD are removed;

15

Figure 6. Internal structure of the ProcessingStack.
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4.4 Resampling

If the timestamp requested by the caller is not present in the data (either it has been filtered out

or it was not present from the beginning), temporal interpolations will be performed. The Me-

teo1DInterpolator is responsible for calling a temporal interpolation method for each meteorological

parameter as configured by the end user. The end user chooses between the following methods of425

temporal interpolation for each meteorological parameter separately:

no interpolation. If data exists for the requested timestamp it will be returned or remain nodata otherwise;

nearest neighbour. The closest data point in the raw data that is not nodata is returned;

linear. The value is linearly interpolated between the two closest data points;

accumulation. The raw data is accumulated over the period provided as argument;430

daily solar sum. The potential solar radiation is generated as to match the daily sum as provided in the input

data.

These methods must be able to both downsample and upsample according to the needs (except

the daily solar sum). These methods take a time series as argument and a timestamp and return

the interpolated value for a given meteorological parameter. The ability to support an arbitrary and435

variable sampling rate for both the input and output data prevents the utilisation of well known signal

analysis algorithms. Moreover some meteorological parameters require a specific processing, such

as precipitation that must be accumulated over a given period.
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Fig. 7. Resampling and reaccumulation operations.

The following approach has therefore been implemented (see in figure 7): for each requested data

point, if the exact timestamp cannot be found or in case of reaccumulation, the index where the440

new point should be inserted will be sought first. Then the previous valid point is sought within

a user-configured search distance. The next valid point is then sought within the user-configured

17

Figure 7. Resampling and reaccumulation operations.
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kriging with a lapse rate if enough stations can provide data and no user-supplied grids are available515

for this time step, reverting to filling the grid with the measurements from a single station with a

standardized lapse rate if nothing else can be done. Everything happens transparently from the point

of view of the caller.

4.6.1 Lapse Rates
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Fig. 8. Removing outliers for computing lapse rates

Due to the fact that for many meteorological parameters the altitudinal lapse rates are a dominant520

factor in mountainous areas, properly handling them is of utmost importance for spatial interpola-

tions. This becomes a real issue for fully automated simulations: it is possible that some outliers

significantly degrade the computed lapse rate or that no real lapse rate can be found in the data.

20

Figure 8. Removing outliers for computing lapse rates.
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Fig. 9. Time required by each participant to write an empty filter and the filter required by the assignment. The

plain lines represent the median.

24

Figure 9. Time required by each participant to write an empty filter and the filter required by
the assignment. The plain lines represent the median.
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case scenario by being overly sensitive to specific issues: one user spent quite a lot of time trying to

make his test work, only to realize that he was not testing with his latest changes, another one used625

a wrong test dataset, etc

The first task, that is writing an empty filter, would usually be skipped by programers who already

developed at least one such filter but this was included in order to better discriminate between the

overhead (ie integrating one’s development within MeteoIO) and the intrinsic complexity of the

required processing (ie the logic of the filter that had to be implemented). As is seen in figure 9, the630

overhead for an average casual contributor is around 30-40 minutes (keeping in mind the majority

of the users that have been tested had no previous experience in C or C++).

5.2 Meteorological Data Processing Benchmarks
D
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Fig. 10. Performance when reading a SMET ASCII file with 1 year of hourly data into memory

Reading meteorological data stored in an ASCII file bears a significant overhead. The file needs

to be read line by line, each line needs to be split up based on a predefined delimiter, the values need635

to be converted from strings to their respective data types and the data need to be stored in memory

for further processing. A comparative illustration of different programming environments and their

performance in completing the aforementioned task is given in figure 10. The GNU compilers gcc,

g++ and gfortran were used to obtain the benchmark executables. Clearly C++ and MeteoIO, which

is programmed in C++ and utilises the GNU STL and streams implementations, show the same640

performance. The efficient dynamic memory management gives C the overall advantage, whereas

Fortran95 (static) shows good performance for parsing values to doubles with the drawback, that

the exact layout and size of the file need to be known at compile time. Allowing these properties

to be dynamic, slows down the performance. Apart from only reading the data, MeteoIO performs

25

Figure 10. Performance when reading a SMET ASCII file with 1 year of hourly data into mem-
ory.
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a unit conversion and finally stores the data in MeteoData objects which are then used for further645

processing and exposed the user.
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Fig. 11. Performance increase in MeteoIO (March 2011 until February 2014)

Figure 11 illustrates the performance gain in the course of 3 years of MeteoIO development when

resampling hourly data for one station to 20 minutes. Data is read from a SMET ASCII file that

contains hourly measurements of 11 parameters for a period of 12 years for one weather station.

The most significant performance gain was achieved between versions 2.1.1 and 2.1.2 following the650

redesign of the core MeteoData class, representing all measured parameters of one station at one mo-

ment in time. Since MeteoData objects are copied and instantiated during all processing steps focus-

ing on the performance of the copy constructor yielded a spectacular performance boost. Decreasing

the time spent on the construction of MeteoData objects was paramount to making the library perfor-

mant. Further improvements leading up to version 2.1.3 are mainly comprised of an efficient use of655

file pointers regarding I/O and a redesign of the processing capabilities, namely reducing the amount

of copies necessary when dealing with series of data points during filtering and resampling. Opti-

mizations in all parts of the code bring about a constant improvement of the MeteoIO performance

albeit a significant increase of features and requirements. The strategy throughout development is

to write correct code following best practice design rules, to then profile it using static and dynamic660

analysis tools as layed out in 2.7 and to optimize where significant improvements can be expected

based on the results of the profiling. Some technically well-engineered features, such as dynamic

plug-in loading at runtime, have proven unnecessary and were either adapted to meet actual user

demands or removed.

26

Figure 11. Performance increase in MeteoIO (March 2011 until February 2014).
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Fig. 12. Benchmarks of some spatial interpolation algorithms for various grid sizes for seven input stations

(plain lines) and fourteen input stations (dotted lines).

5.3 Spatial Interpolations Benchmarks665

Unsurprisingly, most of the spatial interpolation algorithms scale as O(n). However, since there is

some overhead (constructing the required spatial interpolator, setting the grid metadata, gathering

the necessary data) it is interesting to see how the real world scalability is. To this effect, the “pass-

through” interpolation has been used that fills the grid with nodata by calling the optimized STL

methods on the underlying data container. Different spatial interpolations have been benchmarked670

for different grid sizes, ranging from one cell to 25 million cells. Two scenarios have been used: one

providing seven meteorological stations as input and one providing fourteen meteorological stations

as input.

The results are shown in figure 12. The linear behaviour starts to be visible after around 0.7 ms

which would then be the total overhead for spatial interpolations. This overhead also depends on675

the chosen algorithm: for example the simple pass-through has a very low 0.2 ms overhead (there is

nothing to prepare before filling the grid) to 1.2 ms for ordinary kriging with fourteen stations (the

necessary matrices have to be computed with the station data before filling the grid).

27

Figure 12. Benchmarks of some spatial interpolation algorithms for various grid sizes for seven
input stations (plain lines) and fourteen input stations (dotted lines).
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